Mechanisms of Resistance to Decitabine in the Myelodysplastic Syndrome
نویسندگان
چکیده
PURPOSE The DNA methylation inhibitor 5-aza-2'-deoxycytidine (DAC) is approved for the treatment of myelodysplastic syndromes (MDS), but resistance to DAC develops during treatment and mechanisms of resistance remain unknown. Therefore, we investigated mechanisms of primary and secondary resistance to DAC in MDS. PATIENTS AND METHODS We performed Quantitative Real-Time PCR to examine expression of genes related to DAC metabolism prior to therapy in 32 responders and non-responders with MDS as well as 14 patients who achieved a complete remission and subsequently relapsed while on therapy (secondary resistance). We then performed quantitative methylation analyses by bisulfite pyrosequencing of 10 genes as well as Methylated CpG Island Amplification Microarray (MCAM) analysis of global methylation in secondary resistance. RESULTS Most genes showed no differences by response, but the CDA/DCK ratio was 3 fold higher in non-responders than responders (P<.05), suggesting that this could be a mechanism of primary resistance. There were no significant differences at relapse in DAC metabolism genes, and no DCK mutations were detected. Global methylation measured by the LINE1 assay was lower at relapse than at diagnosis (P<.05). On average, the methylation of 10 genes was lower at relapse (16.1%) compared to diagnosis (18.1%) (P<.05). MCAM analysis showed decreased methylation of an average of 4.5% (range 0.6%-9.7%) of the genes at relapse. By contrast, new cytogenetic changes were found in 20% of patients. CONCLUSION Pharmacological mechanisms are involved in primary resistance to DAC, whereas hypomethylation does not prevent a relapse for patients with DAC treatment.
منابع مشابه
Epigenetic effects of decitabine on acute lymphoblastic and acute promyelocytic leukemia cells
Background: Decitabine (5-aza-2'-deoxycytidine, DAC) is a deoxycytidine analog currently used as an effective drug against myelodysplastic syndromes and acute myeloid leukemia. Although various studies have pointed out the epigenetic effects of this drug, its epigenetic mechanisms in different leukemic cell lines are not specified. In this lab trial study, possible epigenetic effects of decitab...
متن کاملRange Determination of Antigen Expression in Myeloid, Erythroid and Lymphoid Cell Lineages among Patients with Myelodysplastic Syndrome
Background: Myelodysplastic syndrome is a mixed clonal disorder of bone marrow progenitor cells. Understanding the pattern of the different lineage-specific, immature, and mature markers in myelodysplastic syndrome will help in setting-up the frame of reference to diagnose. Patients and Methods: We compared 60 bone marrow samples from 30 newly-diagnosed patients with myelodysplastic syndrome ...
متن کاملEstablishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5
Two hypomethylating agents (HMAs), azacitidine and decitabine, have demonstrated clinical activities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML); however, potential problems include development of acquired resistance. HMA-resistant patients have very poor prognosis and this cohort of patients constitutes an important area of research. To understand the mechanisms underlyi...
متن کاملMyeloid Cell Leukemia-1 Gene Expression and Clinicopathological Features in Myelodysplastic Syndrome
Background and Aims: Myeloid cell leukemia-1 (Mcl-1) plays a pivotal role in the survival of hematologic and solid tumors, and is known as a substantial oncogene. Studies have demonstrated the altered expression of Mcl-1 has been linked to malignancy development and poor prognosis. In this research, we have studied the expression of Mcl-1 mRNA in myelodysplastic syndrome (MDS) patients and det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011